(相关资料图)
1、如图,点P是正方形ABCD内一点,连接PA、PB、PC,将△ABP绕点B顺时针旋转到△CBQ的位置。
2、若PA=2,PB=4,∠APB=135°求PC的长。
3、解:在正方形ABCD中,∠ABC=90°∵△ABP绕点B顺时针旋转90°到△CBQ的位置∴△ABP≌△CBQ∴CQ=AP=2,BQ=BP=4,∠PBQ=90°在Rt△PBQ中,由勾股定理得PQ=根号下BP方+BQ方=根号下4方+4方=根号下32∵BP=BQ∴∠BPQ=∠BQP在△BPQ中,∠BQP=(180°—∠PBQ)*二分之一=45°又∵∠BQC=∠APB=135°∴∠PQC=∠BQC—∠PQB=90°在Rt△PQC中,由勾股定理得PC=根号下PQ方+QC方=6。
本文就为大家分享到这里,希望看了会喜欢。
标签: